Papers

2020

This image is a place holder for the heating/cooling stage

Damage in metal forming

A.E. Tekkaya, P.O. Bouchard, S. Bruschi, C.C. Tasan
CIRP Annals (accepted, 2020)
JLZhang_Acta2020

Design of a V-Ti-Ni alloy with superelastic nano-precipitates

J.-L. Zhang, J.L. Cann, S.B. Maisel, K. Qu, E. Plancher, H. Springer, E. Povoden-Karadeniz, P. Gao, Y. Ren, B. Grabowski, C.C. Tasan
Acta Materialia (in press,2020)

https://www.sciencedirect.com/science/article/pii/S1359645420305218
M.Mousavi_ScienceAdvance2020

Origin of micrometer-scale dislocation motion during hydrogen desorption

M. Koyama, S. Mohadeseh Taheri-Mousavi, H. Yan, J. Kim, B. Cameron, S. Moeini-Ardakani, J. Li, C.C. Tasan
Science Advance vol.6 no.23 (2020)

https://advances.sciencemag.org/content/6/23/eaaz1187
MJiang_MetallurgicalA2020

Effects of defect development during displacive austenite reversion on strain hardening and formability

M. Jiang, J. Kang, C.A. Hirst, C.C. Tasan
Metallurgical and Materials Transactions A 51 (2020) 3832-3842

https://link.springer.com/article/10.1007/s11661-020-05835-9
Domenech_AdvancedEngMat2020

Strong macroscale supercrystalline structures by 3D printing combined with self-assembly of ceramic functionalized nanoparticles

B. Domènech, A. Tan, H. Jelitto, E.Z. Berodt, M. Blankenburg, O. Focke, J. Cann, C.C. Tasan, L.C. Ciacchi, M. Müller, K.P. Furlan, A.J. Hart, G. A. Schneider
Advanced Engineering Materials 22 (2020) 2000352

https://doi.org/10.1002/adem.202000352
S.Wei_Scripta2020

Plastic strain-induced sequential martensitic transformation

S. Wei, J. Kim, J.L. Cann, R. Gholizadeh, N. Tsuji, C.C. Tasan
Scripta Materialia 185 (2020) 36-41

https://www.sciencedirect.com/science/article/pii/S1359646220302086
J.Kim_Acta2020

Hydrogenation-induced lattice expansion and its effects on hydrogen diffusion and damage in Ti-6Al-4V

J. Kim, E. Plancher, C.C. Tasan
Acta Materialia 188 (2020) 686-696

https://www.sciencedirect.com/science/article/pii/S1359645420301336
M.M.Wang_Scripta2020

Manganese micro-segregation governed austenite re-reversion and its mechanical effects

M-M. Wang, M. Jiang, C.C. Tasan
Scripta Materialia 179 (2020) 75-79

https://www.sciencedirect.com/science/article/pii/S1359646219307511

Laser-induced toughening inhibits cut-edge failure in multi-phase steel

J.P.M. Hoefnagels, C. Du, C.C. Tasan
Scripta Materialia 177 (2020) 79-85

https://www.sciencedirect.com/science/article/pii/S1359646219305561?via%3Dihub
E.P.George_Acta2020

High entropy alloys: a focused review of mechanical properties and deformation mechanisms

E.P. George, W.A. Curtin, C.C. Tasan
Acta Materialia 188 (2020) 435-474

https://www.sciencedirect.com/science/article/pii/S1359645419308444

Tracking microstructure evolution in complex multi-axial strain paths: A bulge test methodology

E. Plancher, K. Qu, N. H. Vonk, M. Gorji, T. Tancogne-Dejean, C.C. Tasan
Experimental Mechanics 60 (2020) 35-50

https://link.springer.com/article/10.1007%2Fs11340-019-00538-8

2019

41586_2019_1702_Fig3_HTML

Strategies to transform the sustainability of structural metals

D. Raabe, C.C. Tasan, E. Olivetti
Nature, 575 (2019) 64-74.

https://www.nature.com/articles/s41586-019-1702-5

Diffraction-based misorientation mapping: A continuum mechanics description

S-S. Rui, L-S. Niu, H-J. Shi, S.L. Wei, C.C. Tasan
Journal of the Mechanics and Physics of Solids 133 (2019) 103709

https://www.sciencedirect.com/science/article/pii/S0022509619301279

Strain-programmable fiber-based artificial muscle

M. Kanik, S. Orguc, G. Varnavides, J. Kim, T. Benavides, D. Gonzalez, T. Akintilo, C.C. Tasan, A.P. Chandrakasan, Y. Fink, P. Anikeeva

Overview of metastability and compositional complexity effects for hydrogen-resistant iron alloys: Inverse austenite stability effects​

M. Koyama, C.C. Tasan, K. Tsuzaki
Engineering Fracture Mechanics, 214(2019), 123-133.

https://www.sciencedirect.com/science/article/pii/S001379441831302X?via%3Dihub

Interstitial-free bake hardening realized by epsilon martensite back-transformation

S.L. Wei, M. Jiang, C.C. Tasan
Metallurgical and Materials Transactions A 50 (2019) 3985-3991

https://link.springer.com/article/10.1007/s11661-019-05344-4

Fatigue resistance of laminated and non-laminated TRIP-maraging steels: Crack roughness vs. tensile strength

Z. Zhang, M. Koyama, M-M. Wang, C.C. Tasan, H. Noguchi
Metallurgical and Materials Transactions A, 50 (2019) 1142-1145.

https://link.springer.com/article/10.1007/s11661-018-5081-6

Engineering atomic-level complexity in high-entropy and complex concentrated alloys

H.S. Oh, S. J. Kim, W. H. Ryu, K. N. Yoon, K. Odbadrakh, M. Sai, F. Körmann, Y. Ikeda, C. C. Tasan, D. Raabe, T. Egami, E. S. Park
Nature Communicationsvolume 10, Article number: 2090 (2019).

https://www.nature.com/articles/s41467-019-10012-7

 

Boundary micro-cracking in metastable Fe45Mn35Co10Cr10 high-entropy alloys

S.L. Wei, J. Kim, C. C Tasan 
Acta Materialia, 168(2019), 76-86. 

https://www.sciencedirect.com/science/article/pii/S1359645419300515

 

Microstructural damage sensitivity prediction using spatial statistics

B. Cameron, C.C. Tasan
Scientific Reports, 9(2019), 2774.

https://www.nature.com/articles/s41598-019-39315-x

Microstructural and micro-mechanical characterization during hydrogen charging: An in situ scanning electron microscopy study

J. Kim,  C.C. Tasan
International Journal of Hydrogen Energy, 44, 12(2019), 6333-6343.

2018

Phase stability effects on hydrogen embrittlement resistance in martensite – reverted austenite steels

B. Cameron, M. Koyama, C.C. Tasan
Metallurgical and Materials Transactions A, 50(2018), 29-30.

This image is a place holder for the heating/cooling stage

Multiphase Iron-Steel Objects from Medieval Anatolian Seljuks: Classification and Production Techniques

Ü. Güder, C. C. Tasan, A. Yavas.
Archaeologicke Rozhledy, 70 (2018), 483-493.

Metastability in High Entropy Alloys: a Review

S.L. Wei, F. He, C.C. Tasan
Journal of Materials Research, 33(2018), 2924-2937.

Multiresolution mechanical characterization of hierarchical materials: Spherical nanoindentation on martensitic Fe-Ni-C steels

A. Khosravani, L. Morsdorf, C.C. Tasan, S. Kalidindi
Acta Materialia, 153(2018), 257-269.

Experimental–numerical study on strain and stress partitioning in bainitic steels with martensite–austenite constituents

N. Fujita, N. shikawa, F. Roters, C.C. Tasan, D. Raabe
International Journal of Plasticity, 104 (2018), 39-53.

Preventing damage and redeposition during focused ion beam milling: The “umbrella” method

T. Vermeij, E. Plancher, C.C. Tasan
Ultramicroscopy, vol. 186. (2018) pp. 35-41.

https://www.sciencedirect.com/science/article/pii/S0304399117304060

Microstructural mechanisms of fatigue crack non-propagation in TRIP-maraging steels

Z. Zhang, M. Koyama, M.M. Wang, K. Tsuzaki, C.C. Tasan, H. Noguchi
International Journal of Fatigue, vol. 113. (2018) pp. 126-136.

https://www.sciencedirect.com/science/article/pii/S0142112318301439?via%3Dihub

2017

Partial recrystallization of gum metal to achieve enhanced strength and ductility

J.-L. Zhang, C.C. Tasan, M.J. Lai, D. Yan, D. Raabe
Acta Materialia, 135 (2017), 400-410.

https://www.sciencedirect.com/science/article/pii/S1359645417305268

Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics

J.-L. Zhang, D. Raabe, C.C. Tasan
Acta Materialia, 141 (2017), 374-387.

Interfacial hydrogen localization in austenite/martensite dual-phase steel visualized through optimized silver decoration and scanning Kelvin probe force microscopy

M. Koyama, T. Nagashima, B. Asif, M. Rohwerder, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe
Materials and Corrosion, accepted (2016).

https://onlinelibrary.wiley.com/doi/full/10.1002/maco.201609104

Effects of martensitic transformability and dynamic strain-age-hardenability on plasticity in metastable austenitic steels containing carbon

T. Ogawa, M. Koyama, C.C. Tasan, K. Tsuzaki, H. Noguchi
Journal of Materials Science, 52 (2017) 7868-7882.

Effects of lamella size and connectivity on fatigue crack resistance of TRIP-maraging steel

Z. Zhao, M. Koyama, M. Wang, K. Tsuzaki, C.C. Tasan, H. Noguchi
International Journal of Fatigue, 100 (2017) 176-186.

A TRIP-assisted dual-phase high-entropy alloys: Grain size and phase fraction dependences of deformation behavior

Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe
Acta Materialia, 131 (2017) 323-335.

Recent Progress in Microstructural Hydrogen Mapping in Steels: Quantification, Kinetic Analysis, and Multi-Scale Characterization

M. Koyama, M. Rohwerder, C.C. Tasan, A. Bashir, E. Akiyama, K. Takai, D. Raabe, K. Tsuzaki
Materials Science and Technology, 33 (2017) 1481-1496.

Martensite size effects on damage in quenching and partitioning steels

M-M. Wang, J-C. Hell, C.C. Tasan
Scripta Materialia, 138 (2017) 1-5.

Bone-like crack resistance in hierarchical metastable nanolaminate steels

M. Koyama, Z. Zhao, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, C.C. Tasan
Science 355 (2017) 1055-1057.

In-situ observation of silver-decoration evolution under hydrogen permeation: effects of grain misorientation on hydrogen flux in pure iron

M. Koyama, D. Yamasaki, T. Nagashima,  C.C. Tasan, K. Tsuzaki, 
Scripta Materialia 129 (2017) 48-51. 

Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys

Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, 
Scientific Reports, 7 (2017) 40704. 

https://www.nature.com/articles/srep40704

Complexion-mediated martensitic phase transformation in Titanium

J. Zhang, C.C. Tasan, M.J. Lai, A-C. Dippel, D. Raabe, 
Nature Communications, 8 (2017) 14210. 

https://www.nature.com/articles/ncomms14210

2016

Multiple mechanisms of lath martensite plasticity

L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, C.C. Tasan
Acta Materialia, 121 (2016) 202-214.

https://www.sciencedirect.com/science/article/pii/S1359645416306851

On the mechanism of 332 twinning in metastable β-titanium alloys

M. Lai, C.C. Tasan, D. Raabe
Acta Materialia, 111 (2016) 173-186.

https://www.sciencedirect.com/science/article/pii/S1359645416301938

From electronic structure to phase diagrams: A bottom-up approach to understand the stability of titanium–transition metal alloys 

L-F. Huang, J. Zhang, M-J. Lai, C.C. Tasan, S. Sandloebes, D. Raabe, J. Neugebauer
Acta Materialia, 113 (2016) 311-319.

https://www.sciencedirect.com/science/article/pii/S1359645416303275

 

Spectral TRIP enables ductile 1.1 GPa martensite

M-M. Wang, C.C. Tasan, D. Ponge, D. Raabe
Acta Materialia, 111 (2016) 262-272.

https://www.sciencedirect.com/science/article/pii/S1359645416302336

Metastable high entropy dual phase alloys overcome the strength-ductility trade-off

Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan
Nature, 534 (2016) 227-230.

https://www.nature.com/articles/nature17981

Self-Healing metals

B. Grabowski and C.C. Tasan,
Advances in Polymer Science (1-21). Berlin, Heidelberg: Springer (2016).

https://link.springer.com/chapter/10.1007%2F12_2015_337

Hydrogen-assisted damage in austenite/martensite dual-phase steel

M. Koyama, C.C. Tasan, T. Nagashima, E. Akiyama, D. Raabe, K. Tsuzaki
Philosophical Magazine, 96 (2016) 9-18.

https://www.tandfonline.com/doi/full/10.1080/09500839.2015.1130275

Multi-probe microstructure tracking during heat treatment without an in-situ setup: Case studies on martensitic steel, dual phase steel and β-Ti alloy

J.-L. Zhang, L. Morsdorf, C.C. Tasan Materials Characterization, 111 (2016) 137-146.

https://www.sciencedirect.com/science/article/pii/S1044580315300590

2015

Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design

K.G. Pradeep, C.C. Tasan, M.J. Yao, Y. Deng, H. Springer, D. Raabe
Materials Science and Engineering A, 648 (2015) 183-192.

https://www.sciencedirect.com/science/article/pii/S0921509315303506

 

From high entropy alloys to high entropy steels

D. Raabe, C.C. Tasan, H. Springer, M. Bausch
Steel Research International, 86 (2015) 9999.

https://onlinelibrary.wiley.com/doi/abs/10.1002/srin.201500133

 

Deformation mechanism of Ti-Nb-based gum metal: Dislocation channeling and deformation induced ω-β transformation

M. Lai, C.C. Tasan, D. Raabe
Acta Materialia, 100 (2015) 290-300.

https://www.sciencedirect.com/science/article/pii/S1359645415006242

 

Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys

D. Ma, M.J. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, D. Raabe
Acta Materialia, 98 (2015) 288-296.

https://www.sciencedirect.com/science/article/pii/S1359645415005017

 

Retardation of plastic instability via damage-enabled micro-strain de-localization

J.P.M. Hoefnagels, C.C. Tasan, R. Peters, F. Maresca, V. Kouznetsova
Journal of Materials Science, 50 (2015) 6882-6897.

https://link.springer.com/article/10.1007/s10853-015-9164-0

 

Enhancing hydrogen embrittlement resistance of lath martensite by introducing nano-films of interlath austenite

M-M. Wang, C.C. Tasan, M. Koyama, D. Ponge, D. Raabe
Metallurgical and Materials Transactions A, 46 (2015) 3797-3802.

https://link.springer.com/article/10.1007/s11661-015-3009-y

 

High resolution in-situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels

D. Yan, C.C. Tasan, D. Raabe
Acta Materialia, 96 (2015) 399-409.

https://www.sciencedirect.com/science/article/pii/S1359645415003596

 

Damage resistance in gum metal through cold-work induced microstructural heterogeneity

J-L. Zhang, C.C. Tasan, M. Lai, J. Zhang, D. Raabe
Journal of Materials Science, 50 (2015) 5694.

https://link.springer.com/article/10.1007/s10853-015-9105-y

 

3D structural and atomic-scale analysis of lath martensite: effect of the transformation sequence

L. Morsdorf, C.C. Tasan, D. Ponge, D. Raabe
Acta Materialia, 95 (2015) 366-377.

https://www.sciencedirect.com/science/article/pii/S1359645415003444

 

An overview of dual phase steels: Advances in microstructure-oriented processing and micromechanically-guided design

C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe
Annual Review of Materials Research, 45 (2015) 19.1-19.41.

https://www.annualreviews.org/doi/full/10.1146/annurev-matsci-070214-021103

 

Design of a twinning-induced plasticity high entropy alloy

Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe
Acta Materialia, 94 (2015) 124-133.

https://www.sciencedirect.com/science/article/pii/S1359645415002566

 

Origin of shear induced β to ω transition in Ti-Nb-based alloys

M. Lai, C.C. Tasan, J. Zhang, B. Grabowski, L.Huang, D. Raabe
Acta Materialia, 92 (2015) 55-63.

https://www.sciencedirect.com/science/article/pii/S1359645415002165

 

This image is a place holder for the heating/cooling stage

A novel roll bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials

H. Springer, C.C. Tasan, D. Raabe
International Journal of Materials Research, 106 (2015) 3-14.

https://www.hanser-elibrary.com/doi/abs/10.3139/146.111156

 

Nano-laminate TRIP-TWIP steel with dynamic strain partitioning and enhanced damage resistance

M-M. Wang, C.C. Tasan, D. Ponge, Ann-Christin Dippel, D. Raabe
Acta Materialia, 85 (2015) 216-228.

https://www.sciencedirect.com/science/article/pii/S1359645414008544

 

2014

Integrated experimental-simulation analysis of stress and strain partitioning in multi-phase alloys

C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shantraj, F. Roters, D. Raabe
Acta Materialia, 81 (2014) 386-400.

https://www.sciencedirect.com/science/article/pii/S1359645414005898

 

Smaller is less stable: size effects on twinning vs. transformation of reverted austenite in TRIP maraging steels

M-M. Wang, C.C. Tasan, D. Ponge, A. Kostka, D. Raabe
Acta Materialia, 79 (2014) 268-281.

https://www.sciencedirect.com/science/article/pii/S1359645414005382

 

Composition dependence of phase stability, deformation mechanisms and mechanical properties of the CoCrFeMnNi high entropy alloy system

C.C. Tasan, Y. Deng, K.G. Pradeep, M.J. Yao, H. Springer, D. Raabe
JOM, 66,10 (2014) 1993-2001.

https://link.springer.com/article/10.1007/s11837-014-1133-6

 

Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments-crystal plasticity simulations

C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, D. Raabe
International Journal of Plasticity 63 (2014) 198-210.

https://www.sciencedirect.com/science/article/pii/S0749641914001260

 

Hydrogen-assisted decohesion and localized plasticity in dual-phase steel

M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe
Acta Materialia, 70 (2014) 174.

https://www.sciencedirect.com/science/article/pii/S135964541400069X

 

A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility

M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe
Scripta Materialia, 72 (2014) 5.

https://www.sciencedirect.com/science/article/pii/S135964621300496X

 

Enhanced superplasticity in an Al-alloyed multicomponent Mn-Si-Cr-C steel

H. Zhang, K.G. Pradeep, S. Mandal, D. Ponge, P. Choi, C.C. Tasan, D. Raabe
Acta Materialia, 63 (2014) 232.

https://www.sciencedirect.com/science/article/pii/S1359645413007970

 

2013

On dislocation involvement in Ti-Nb gum metal plasticity

E. Plancher, C.C. Tasan, S. Sandloebes, D. Raabe
Scripta Materialia, 68 (2013) 805.

https://www.sciencedirect.com/science/article/pii/S1359646213000560

 

2012

Identification of the continuum damage parameter: An experimental challenge in modelling damage evolution

C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers
Acta Materialia, 60 (2012) 3581.

https://www.sciencedirect.com/science/article/pii/S1359645412001978

 

A micropillar compression methodology for ductile damage quantification

C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers
Metallurgical and Materials Transactions A, 43 (2012) 796.

https://link.springer.com/article/10.1007/s11661-011-1021-4

 

Multi-axial deformation setup for microscopic testing of sheet metal to fracture

C.C. Tasan, J.P.M. Hoefnagels, E.C.A. Dekkers, M.G.D. Geers
Exp. Mechanics, 52 (2012) 669.

https://link.springer.com/article/10.1007/s11340-011-9532-x

 

Before 2010

Indentation-based damage quantification revisited

C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers
Scripta Materialia, 63 (2010) 316.

http://www.sciencedirect.com/science/article/pii/S1359646210002629

 

Microstructural banding effects clarified through micrographic digital image correlation

C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers
Scripta Materialia, 62 (2010) 835.

http://www.sciencedirect.com/science/article/pii/S1359646210000801

 

A critical assessment of indentation-based ductile damage quantification

C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers
Acta Materialia, 57 (2009) 495.

http://www.sciencedirect.com/science/article/pii/S1359645409004200

 

Experimental analysis of strain path dependent ductile damage mechanics and forming limits

C.C. Tasan, J.P.M.Hoefnagels, C.H.L.J.ten Horn, M.G.D.Geers
Mechanics of Materials, 41 (2009) 1264.

http://www.sciencedirect.com/science/article/pii/S0167663609001331

 

A brittle-fracture method for 3D visualization of ductile deformation micromechanisms

C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers
Scripta Materialia, 61 (2009) 20.

http://mate.tue.nl/mate/pdfs/10484.pdf

 

Mechanical performance of resol type phenolic resin/layered silicate nanocomposites

C.C. Tasan, C. Kaynak
Polymer Composites, 30 (2009) 343.

http://onlinelibrary.wiley.com/doi/10.1002/pc.20591/abstract

 

Effects of prod. param. on the struc. of resol type phenolic resin/layered silicate nanocomposites

C. Kaynak, C.C. Tasan
European Polymer Journal, 42 (2006) 1908.

http://www.sciencedirect.com/science/article/pii/S001430570600084X

 

Patents 

Devices and Methods for Holding a Sample for Multi-axial Testing

Plancher, E., C.C. Tasan, H.K. Vonk, K. Qu
U.S. Patent Application No.:  62/641,961, (2018).  

 

In situ H-charging set-up for microstructural and mechanical analysis in SEM and other microscopes

J. Kim and C.C. Tasan
U.S. Patent Application No.:  62/674,516, (2018).

Systems and methods for producing sharp edges

G. Roscioli and C.C. Tasan
U.S. Patent Number 62/902,018